Metallkomplexe in Anorganischen Matrices, 8^[1]

Chromtricarbonyl-Komplexe von Benzoylacetonat-substituierten Titan-, Zirkonium- und Aluminium-Alkoxiden*

Ulrich Schubert*, Hermann Buhler und Brigitte Hirle

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, W-8700 Würzburg

Eingegangen am 15. Oktober 1991

Key Words: β-Diketonates / Metal alkoxides / Sol-gel chemistry / π-Arene complexes / Chromium complexes

Metal Complexes in Inorganic Matrices, $8^{[1]}$. – Chromium Tricarbonyl Complexes of Benzoylacetonate-Substituted Titanium-, Zirconium-, and Aluminium Alkoxides^{*}

Benzoylacetone (bzac-H) reacts with one equivalent of $Al(OtBu)_3$ or $Zr(OPr)_4$ to give the mono-substituted compounds $(bzac)Al(OtBu)_2$ (**1b**) and $(bzac)Zr(OPr)_3$ (**1a**), while with one equivalent of $Ti(OtBu)_4$ or $Zr(OtBu)_4$ the bis-substituted derivatives $(bzac)_2Ti(OtBu)_2$ (**3c**) and $(bzac)_2Zr(OtBu)_2$ (**3d**) are ob-

tained. Upon heating in dibutyl ether, **1b** disproportionates into $(bzac)_2Al(OtBu)$ (**3b**) and $Al(OtBu)_3$. Thermal reaction of **1a**, **3b**, and **3c** with $Cr(CO)_6$ leads to metal complexes having a $Cr(CO)_3$ moiety π -bonded to the phenyl group of the benzoylacetonate ligand.

Kleine Metalloxid- oder Metall-Partikel in oxidischen Matrices können ausgehend von Metallsalzen und hydrolysierbaren Verbindungen des Matrix-Bildners auf verschiedene Weise hergestellt werden. In der Regel ist es jedoch schwierig, Größe, Einheitlichkeit und Verteilung der Metall(oxid)-Partikel zu kontrollieren. Um eine hohe Dispersion des Metalls zu erreichen, muß die eingesetzte Metallverbindung während der Bildung der oxidischen Matrix möglichst molekulardispers verteilt sein.

Wie wir kürzlich gezeigt haben^[1], läßt sich dies bei SiO₂ als Matrix-Material durch Polykondensation von Si(OR)4, Silanen des Typs $A - X - Si(OR)_3$, z. B. $A[CH_2]_3Si(OR)_3$ mit $A = NH_2$, NHCH₂NH₂, CN oder CH(COMe)₂, und Metallsalzen im molaren Verhältnis x: y:1 erreichen. Man erhält Xerogele, in denen die Metall-Ionen durch die Gruppen A komplexiert und die entstehenden Metallkomplexe über den Spacer X an das Silicat-Netzwerk angebunden sind. Dadurch wird eine sehr hohe Dispersion der Metall-Ionen im Gel erreicht. Wenn A und X organische Reste sind, und das Metallsalz einer organischen Säure eingesetzt wird, erhält man durch Erhitzen der Gele an der Luft Komposite der Zusammensetzung $MO_m \cdot (x + y)SiO_2$ mit einheitlich großen, gleichmäßig verteilten Metalloxid-Partikeln, deren Durchmesser im nm-Bereich liegt. Anschließende Reduktion der Metalloxid-Partikel ergibt unter Erhalt der Partikel-Größen und -Verteilung Metall/SiO₂-Komposite M \cdot (x + y)SiO₂.

Diese Arbeiten sollen auf andere keramische Matrices ausgedehnt werden. Liganden des Typs $A-X-E(OR)_n$ (E = Al, Ti, Zr usw.), in denen E-X- eine Al-C-, Ti-Coder Zr-C-Bindung enthält, kommen zur Komplexierung von Metall-Ionen nicht in Frage, da diese Element-Kohlenstoff-Bindungen meist nicht hydrolysestabil sind. Es muß daher eine andere Brücke zwischen dem hydrolysierbaren Alkoxid-Fragment und der funktionellen Gruppe A gewählt werden.

Unser Ansatz zur Verknüpfung von Alkoxid-Fragmenten des Titans, Zirkoniums oder Aluminiums mit Metallkomplex-Fragmenten besteht in der Verwendung von Verbindungen der Art C-X-A, bei denen C eine β -Diketonatoder Carboxylat-Funktion, X ein inerter Spacer und A eine zur Komplexierung von Metall-Ionen geeignete Gruppe ist. Es ist bekannt, daß Alkoxide des Titans, Zirkoniums oder Aluminiums mit Carbonsäuren oder β -Diketonen unter Substitution eines oder mehrerer Alkoxid-Reste durch Carboxylat- oder β -Diketonat-Liganden reagieren^[2]. Diese Liganden werden im Sol-Gel-Prozeß weniger leicht hydrolytisch abgespalten als die verbliebenen Alkoxid-Reste^[3].

Wir berichten in dieser Arbeit über die Modifizierung von Al-, Ti- und Zr-Alkoxiden mit Benzoylaceton (bzac-H) und π -Koordination der Phenylgruppe der modifizierten Alkoxide an Cr(CO)₃-Fragmente. Umsetzungen von Aluminium-^[4], Titan-^[5] und Zirkoniumalkoxiden^[6] mit β -Diketonen sind seit geraumer Zeit bekannt.

Ergebnisse und Diskussion

Erhitzt man Zirkoniumtetrapropoxid in Toluol mit einer äquimolaren Menge Benzoylaceton und destilliert den dabei entstehenden Alkohol azeotrop ab, entsteht ein farbloses Öl, in dessen IR-Spektrum die v(CO)-Banden des Benzoylacetons verschwunden sind. Statt dessen beobachtet man im Bereich von 1590–1515 cm⁻¹ drei Banden, deren Lagen mit den v(CO)- und v(C=C)-Banden der bereits bekannten Derivate (acac)Zr(OiPr)₃ (acac = Acetylacetonat) und (bzac)Zr(OiPr)₃^[6] übereinstimmen (Gl. 1). Eine analysenreine Isolierung der Verbindung gelang nicht, doch deuten alle spektroskopischen Daten und die Analogie zu den acac-Derivaten (acac = Acetylacetonat) darauf hin, daß es sich um 1a handelt. Weder bei 1a noch bei allen anderen in dieser Arbeit beschriebenen Verbindungen wurden Molmassenbestimmungen durchgeführt; die angegebenen Formeln sollen daher nur die Stöchiometrie der Verbindungen, nicht deren Oligomerisationsgrad und Koordinationszahl wiedergeben.

Erhitzt man 1a in Dibutylether/THF mit einer äquimolaren Menge $Cr(CO)_6$ unter Rückfluß, so erhält man den Chromtricarbonyl-Komplex 2a mit 53% Ausbeute.

$$E(OR)_{n+1} + bzac-H \longrightarrow (RO)_{n}E(bzac)$$

$$\frac{1 | E n R}{a | Zr 3 Pr}$$
(1)
$$\frac{E = Zr}{+ Cr(CO)_{6}} (PrO)_{3}Zr[OC(Me)CHC(O) - C_{6}H_{5}Cr(CO)_{3}]$$

$$2n$$

Entsprechende Versuche mit Al(OsBu)₃ und Ti(OEt)₄ verliefen insofern analog, als nach schrittweiser Umsetzung mit Benzoylaceton und Cr(CO)₆ ähnliche IR- und ¹H-NMR-Spektren erhalten wurde. Allerdings konnten für die zu **1a** und **2a** analogen Al- und Ti-Verbindungen keine befriedigenden Analysenwerte erhalten werden. Es ist daher nicht auszuschließen, daß die erhaltenen Verbindungen solvolysiert vorliegen oder daß neben der Substitution eines OR-Restes durch Benzoylacetonat auch andere Reaktionen, z. B. Kondensation zu höherkernigen Clustern, ablaufen. Ungeachtet der genauen Zusammensetzung enthalten die Produkte aber (π -Aromat)Cr(CO)₃-Einheiten.

Wegen der unbefriedigenden Reinheit der neuen Arentricarbonylchrom-Komplexe sollten Titan- und Aluminium-Alkoxide eingesetzt werden, die eine Isolierung der Produkte erleichtern. Es ist bekannt, daß Alkoxide mit dem sterisch anspruchsvollen *tert*-Butoxy-Rest nicht oder nur gering assoziiert sind. Auch wenn im Sol-Gel-Prozeß *tert*-Butylate kaum eingesetzt werden, versprach die Variation des Alkoxy-Substituenten übersichtlichere Reaktionen. Die erhaltenen Produkte haben also Modell-Charakter für Umsetzungen anderer Alkoxide dieser Elemente.

Umsetzung von Aluminiumtri-tert-butoxid mit Benzoylaceton in Toluol ergibt 1b als analysenrein isolierbares Produkt (Gl. 1). Das IR-Spektrum von 1b zeigt drei starke Banden bei 1515, 1560 und 1590 cm⁻¹ für die v(C=C)- und v(C=O)-Schwingungen des koordinierten β -Diketonats. Im ¹H-NMR-Spektrum finden sich jeweils zwei Signale für die OCMe₃-Gruppen und die Methyl- und Methinprotonen des Benzoylacetonats. Das muß auf eine unsymmetrische Struktur des Produkts zurückzuführen sein. In Analogie zu den Verbindungen (acac)Al(OiPr)₂ und (acac)Al(OSiMe₃)₂^[7] ist anzunehmen, daß auch 1b als Alkoxid-verbrücktes Dimer $(RO)_2Al(\mu-OR)_2Al(\beta-diketonat)_2$ mit einem tetraedrisch und einem oktadedrisch umgebenen Aluminium-Atom vorliegt. Wegen des unsymmetrischen Diketonat-Liganden sind bei 1b mehrere Isomere möglich, die, wie auch bei der Titan-Verbindung 3c (s.u.), zu mehreren Signalen im ¹H-NMR-Spektrum führen. Die Verbindung 1b ist bei Raumtemperatur nicht fluktuierend.

Setzt man 1b in Dibutylether/THF mit $Cr(CO)_6$ um, so isoliert man nicht wie erwartet das zu 2a analoge $Cr(CO)_3$ -Derivat, sondern das Bis(diketonat)-Derivat 2b als einziges Produkt (Gl. 2).

Um die Bildung des unerwarteten Produkts **2b** zu erklären, muß man eine Dismutierung von **1b** unter den Reaktionsbedingungen in den Bis(β -diketonat)-Komplex **3b** und Al(OR)₃ annehmen. Daß diese Annahme berechtigt ist, läßt sich durch Erhitzen von **1b** in Dibutylether in Abwesenheit eines weiteren Reaktionspartners zeigen.

Auch wenn die Umwandlung von 1b in 3b unter den gleichen Reaktionsbedingungen wie in Gegenwart von $Cr(CO)_6$ nur zu etwa 88% abläuft, läßt sich 3b ¹H-NMR-spektroskopisch eindeutig nachweisen. Das gebildete Al $(OtBu)_3$ kann abgetrennt und im Vergleich mit einer authentischen Probe identifiziert werden. Die Bildung von 2b ist also auf die bei der Umsetzung angewandten Reaktionsbedingungen zurückzuführen.

Alkoxyaluminiumbis(β -diketonate) werden als meist thermolabil beschrieben und dismutieren gewöhnlich leicht zu Aluminiumtris(β -diketonaten) und Dialkoxyaluminium- β diketonaten^[7]. **2b** und **3b** sind vermutlich durch den sperrigen Butoxyrest stabilisiert.

Setzt man äquimolare Mengen Ti $(OtBu)_4$ mit Benzoylaceton in Toluol um, so erhält man bereits bei Raumtemperatur statt Ti $(OtBu)_3$ (bzac) die Verbindung Ti $(OtBu)_2$ -(bzac)₂ (**3c**) (Gl. 2). Entweder unterliegt bei dieser Umsetzung ein intermediär gebildetes Ti $(OtBu)_3$ (bzac) einem raschen Liganden-Austausch oder Substitution des zweiten Alkoxid-Restes erfolgt viel schneller als die des ersten.

Für die Methylprotonen der Diketonat- und Alkoxy-Liganden findet man im ¹H- und ¹³C-NMR-Spektrum von **3c** mehrere Signale, was auf eine unsymmetrische Struktur bzw. das Vorliegen von Isomeren in Lösung hinweist. Von Verbindungen der allgemeinen Zusammensetzung M(bzac)₂X₂ sind fünf geometrische Isomere möglich^[*1] (*cis,cis,cis, cis,cis,trans, cis,trans,cis, trans,cis,cis* und *trans,trans,trans;* optische Isomere sind unberücksichtigt). Von den drei Iso-

^[*] Zur Unterscheidung der Isomere werden drei Präfixe cis oder trans verwendet: das erste gibt die relative Position der X-Reste an, das zweite die der Benzoyl-Gruppen und das dritte die der Acetyl-Gruppen.

meren mit cis-ständigen Resten X hat einzig das cis, cis, cis-Isomer nicht-äquivalente Methyl-Gruppen. Das beobachtete Signal-Muster im Bereich um $\delta = 2$, ein leicht verbreitertes Singulett neben zwei weiteren Singuletts bei etwas höherem Feld, läßt darüber hinaus noch auf das Vorliegen weiterer Isomerer schließen. Nicht-äquivalente Methyl-Gruppen findet man auch in anderen Ti(bzac)₂X₂-Komplexen (X = F, Cl, $Br^{[8]}$; X = $OiPr^{[9]}$), dort allerdings erst bei Abkühlung der Lösungen auf -20 bis -50 °C. 3c ist damit ein erster Vertreter des Verbindungstyps Ti(bzac)₂X₂, bei dem bei Raumtemperatur die Geschwindigkeit der Diketonat-Umlagerung so langsam ist, daß die verschiedenen Isomere im ¹H-NMR-Spektrum beobachtet werden können. Es ist bekannt, daß die (intramolekulare) Umlagerungsreaktion von Ti(OR)₂(acac)₂ durch sperrige Reste R verlangsamt wird^[10].

Abb. 1. SCHAKAL-Zeichnung von **3c**. Ausgewählte Abstände [pm] und Winkel [°]:

Ti-01	198.6(6)	01-C1	128(1)
Ti-02	206.3(6)	02-C2	124(1)
Ti-03	210.9(6)	03-C3	131(1)
Ti-04	201.6(6)	04-C4	129(1)
Ti-05	177.3(7)	05-C5	142(1)
Ti-06	179.7(7)	06-C6	142(1)
01-Ti-02	87.9(2)	03-Ti-04	84.6(3)
01-Ti-03	83.6(2)	03-Ti-05	169.2(3)
01-Ti-04	166.4(3)	03-Ti-06	88.9(3)
01-Ti-05	93.6(3)	04-Ti-05	96.7(2)
01-Ti-06	94.5(3)	04-Ti-06	92.1(3)
02-Ti-03	79.4(2)	05-Ti-06	101.8(3)
02-Ti-04	83.3(2)	Ti-05-C5	177.6(7)
02-Ti-05	90.0(3)	Ti-06-C6	172.6(6)
02-Ti-06	167.8(2)		

Das Vorliegen des *cis,cis,cis*-Isomeren in kristallisiertem **3c** wurde durch eine Röntgenstrukturanalyse bestätigt (Abb. 1, Tab. 1). Das Koordinations-Oktaeder von **3c** ist zum einen wegen der Chelat-Fünfringe (Winkel O-Ti-O83.3 und 83.6°), zum anderen wegen der sperrigen *tert*-Butoxy-Gruppen etwas verzerrt. Während der Winkel zwischen den *tert*-Butoxy-Gruppen mit 101.8° deutlich aufgeweitet ist, ist der Winkel O2–Ti–O3 mit 79.4(2)° stark verkleinert. Die Ti–O–R-Einheiten sind wegen des Raumbedarfs der *tert*-Butoxy-Gruppen nahezu linear [Winkel Ti–O5–C5 177.6(7) und Ti–O6–C6 172.6(6)°]. In Abhängigkeit vom *trans*-ständigen Liganden (vgl. Lit.^[11,12]) und von dem Substituenten am Carbonyl-Kohlenstoffatom sind die Ti–O-Abstände der bzac-Liganden sehr unterschiedlich: *trans*-Stellung zu einem OtBu-Rest und Methyl-Substitution führt zu den längsten Ti–O-Abständen.

Umsetzung von 3c mit Cr(CO)₆ in Dibutylether/THF ergab den Chromtricarbonyl-Komplex 2c (Gl. 2), der spektroskopisch eindeutig charakterisiert wurde. Das Produkt konnte nicht analysenrein erhalten werden; seine grüne Farbe wies auf die Anwesenheit von Zersetzungsprodukten hin, die nicht vollständig abgetrennt werden konnten.

Mit der Bildung von Ti(OtBu)₂(bzac)₂ (**3c**) anstelle von Ti(OtBu)₃(bzac) verhält sich Ti(OtBu)₄ gegenüber β -Diketonen deutlich anders als andere Titan-Alkoxide, die bei der Umsetzung mit zunehmender Menge β -Diketon (Acetylaceton, Acetessigsäure-ethylester) eine vollständige Reihe gemischter Alkoxytitandiketonate bilden können^[5]. Die Umsetzung von Zr(OtBu)₄ mit Benzoylaceton liefert den Beweis, daß für dieses unerwartete Verhalten die *tert*-Butoxy-Reste und nicht etwa Benzoylaceton verantwortlich ist: Während die Umsetzung von Zr(*OPr*)₄ mit einem Äquivalent Benzoylaceton das Trialkoxy-Derivat **1a** ergibt (Gl. 1), wird aus Zr(*OtBu*)₄ und Benzoylaceton ebenfalls das Dialkoxy-Derivat (**3d**, Gl. 2) gebildet. Laut ¹H-NMR-Spektrum liegen von **3d** nur zwei Isomere in Lösung vor.

Die in dieser Arbeit beschriebenen Ergebnisse an Cr-(CO)₃-Komplexen zeigen, daß Benzoylacetonat als verbindende Brücke zwischen verschiedenen Alkoxiden und einem Metallkomplex-Fragment dienen kann. Metallkomplex-Fragmente können an den Phenylrest des Benzoylacetonat-Liganden koordiniert werden, ohne daß dabei die Bindung zwischen dem β-Diketonat-Rest und der Alkoxid-Gruppierung beeinträchtigt wird. Die neuen Cr(CO)₃-substituierten Komplexe 2 sind, wie β -Diketonat-substituierte Metall-Alkoxide selbst^[3], als molekulare Vorstufen für den Sol-Gel-Prozeß einsetzbar. Die dabei erhaltenen Metallkomplexsubstituierten oxidischen Materialien der idealisierten Zusammensetzung $EO_x[OC(Me)CHC(O)C_6H_5Cr(CO)_3]$ sollten sich nach den bei SiO₂ als Matrix-Material gemachten Erfahrungen^[1] durch Thermolyse und Pyrolyse leicht in Komposite der Zusammensetzung Cr · EO_x überführen lassen.

Wir danken dem Bayerischen Staatsministerium für Wirtschaft und Verkehr und dem Fonds der Chemischen Industrie für die finanzielle Förderung dieser Arbeit.

Experimenteller Teil

Alle Arbeiten wurden unter trockenem und sauerstofffreiem Stickstoff unter Verwendung getrockneter und mit Stickstoff gesättigter Lösungsmittel durchgeführt. – IR: Perkin-Elmer Modelle 283 (CaF₂-Küvetten). – ¹H-NMR: Varian T60 und Bruker AC200. – ¹³C-NMR: Bruker AC200 (50.3 MHz). – MS: Varian MAT-SM-

CH 7 (70 eV). – Schmelz- und Zersetzungspunkte: Differential-Thermoanalyse, DuPont Thermal Analyzer 990.

Tripropoxy[(tricarbonylchrombenzoyl)acetonato]-zirkonium (2a): Durch Erhitzen einer Lösung von 0.98 g (3 mmol) Zr(OPr)₄ mit 0.49 g (3 mmol) Benzoylaceton in 20 ml Toluol und azeotrope Destillation des entstehenden Alkohols erhält man 1a als farbloses Öl. Dieses wird in einem Gemisch aus 20 ml Dibutylether und 1 ml THF aufgenommen. Nach Zugabe von 0.68 g (3 mmol) Cr(CO)₆ wird 16–18 h unter Rückfluß erhitzt. Lösungsmittel und nicht umgesetztes Cr(CO)₆ werden anschließend i. Vak. entfernt. Nach Umkristallisation aus Toluol/Petrolether (20:1) und Trocknen im Hochvak. erhält man ein braunes Pulver. Ausb. 0.90 g (53%), Schmp. 156 °C (Zers.). – IR (Nujol): v(CO) = 1970 (vs), 1900 (vs, br) cm⁻¹. – ¹H-NMR (C₆D₆): $\delta = 5.4$ (s, 1H, CH), 4.5 (m, br, 5H, C₆H₅), 3.7 (m, br, 6H, OCH₂), 1.6 [m, br, 9H, C(O)Me + CCH₂], 1.0 (br, 9H, Me).

> C₂₂H₃₀CrO₈Zr (565.7) Ber. C 46.71 H 5.35 Gef. C 46.93 H 5.49

(Benzoylacetonato)di-tert-butoxyaluminium (1b): Man rührt eine Lösung von 1.23 g (5 mmol) Aluminium-tri-tert-butoxid und 0.81 g (5 mmol) Benzoylaceton in 20 ml Toluol 8 h bei 40 °C, entfernt dann das Lösungsmittel i. Vak. und kristallisiert den verbleibenden farblosen Feststoff aus siedendem Heptan um. Bei -30 °C fällt 1b als farbloses, kristallines Pulver an. Ausb. 0.61 g (36%), Schmp. 195 °C. - IR (Toluol): v(C=O) 1590 (s), 1560 (s), v(C=C) 1515 (vs) cm⁻¹. - ¹H-NMR (CDCl₃): $\delta = 8.3 - 7.3$ (m, 10H, C₆H₅), 6.23, 6.21, 6.18 (s, 2H, CH), 2.19 [m, 4H, C(O)Me], 1.96 [s, 1H, C(O)Me'], 1.87 [s, 1H, C(O)Me'], 1.35 (m, 36H, OCMe₃).

C₁₈H₂₇AlO₄ (334.4) Ber. C 64.65 H 8.14 Gef. C 65.10 H 8.28

Disproportionierung von 1b beim Erhitzen: Eine Lösung von 0.33 g (1.0 mmol) 1b in 10 ml nBu_2O/THF (10:1) wird 16 h unter Rückfluß erhitzt. Danach wird das Lösungsmittel-Gemisch i. Vak. entfernt. Das farblose Pulver wird mit 3 ml Petrolether gewaschen. Aus der Waschlösung fällt beim Einengen Al(OtBu)₃ als farbloses Pulver an, das spektroskopisch im Vergleich mit einer authentischen Probe identifiziert wird. Der Rückstand besteht aus einem Gemisch von 1b und 3b; Ausb. 0.19 g. – ¹H-NMR (CDCl₃): $\delta =$ 7.6 (m, 5H, C₆H₅), 6.1 und 6.2 (s, 1H, CH), 2.0 und 2.1 [s, 3H, C(O)Me], 1.0 (s, 6H, CMe₃). Aus dem Integrations-Verhältnis der CH-Protonen der Benzoylacetonat-Liganden und der CH₃-Protonen der *tert*-Butoxy-Reste ergibt sich, daß 3b zu ca. 88% vorliegt.

tert-Butoxybis[(tricarbonylchrombenzoyl)acetonato]-aluminium (2b): 0.60 g (1.8 mmol) 1b und 0.40 g (1.8 mmol) Cr(CO)₆ werden in 20 ml Dibutylether/THF (10:1) 16 h unter Rückfluß erhitzt. Danach wird das Lösungsmittel und das nicht umgesetzte Cr(CO)₆ i. Vak. entfernt und das verbliebene braune Pulver aus Toluol/Petrolether umkristallisiert. Ausb. 0.37 g (59%), Schmp. 160 °C (Zers.). – IR (Toluol): v(CO) = 1980 (vs), 1965 (s, sh), 1905 (vs) cm⁻¹. – ¹H-NMR (C₆D₆): δ = 5.8 [br s, 2 H, C(O)CHC(O)], 4.6 – 4.1 (br m, 10 H, C₆H₅ koord.), 1.9 [br s, 6H, C(O)Me], 1.3 – 1.5 (br m, 9 H, OCMe₃). – MS (70 eV): m/z (%) = 698 (0.09) [M⁺], 625 (0.01) [M⁺ – OC₄H₉], 613 (0.53) [M⁺ – 3 CO], 560 (0.71) [M⁺ – Cr(CO)₃], 530 (0.26) [M⁺ – 6 CO], 422 (0.01) [M⁺ – 2 Cr(CO)₃], 367 (0.27) [M⁺ – bzacCr(CO)₃].

> C₃₄H₂₇AlCr₂O₅ (698.4) Ber. C 51.88 H 3.92 Gef. C 50.93 H 4.51

Bis(benzoylacetonato)di-tert-butoxytitan (3c): Zu einer Lösung von 0.68 g (2 mmol) Ti(OtBu)₄ in 20 ml Toluol tropft man unter Rühren 0.32 g (2 mmol) Benzoylaceton in 10 ml Toluol. Nach 2stdg. Rühren bei Raumtemp. entfernt man alle flüchtigen Bestandteile i. Vak. und nimmt das resultierende Öl in 10 ml Petrolether auf. Bei −78 °C fällt **3c** als farbloses Pulver aus, das abfiltriert und im Hochvak. getrocknet wird. Ausb. 0.27 g (52% bzgl. bzac−H), Schmp. 95 °C. − IR (Nujol): v(C=O) 1585 (s), 1550 (vs), v(C=C) 1515 (vs) cm⁻¹. − ¹H-NMR (CDCl₃): δ = 7.5 (m, 10H, C₆H₅), 6.1 (m, 2H, CH), 2.1 [m, 3H, C(O)Me], 1.90 [s, 1.5H, C(O)Me'], 1.97 [s, 1.5H, C(O)Me''], 1.25 (m, 18H, OCMe_3). − ¹³C-NMR (CDCl₃): δ = 192.5, 188.9 (CO), 182.6, 179.3 (C'O), 137.8, 131.1, 128.2, 127.5 (C₆H₅), 98.8, 98.1 (CH), 84.1 (OCMe_3), 32.1, 31.1 (OCMe_3), 27.6, 26.5 [C(O)Me].

Röntgenstrukturanalyse von **3c**: Farblose Kristalle (0.2 × 0.2 × 0.1 mm) aus Petrolether durch langsames Verdunsten des Lösungsmittels bei Raumtemperatur. – Zellparameter: monoklin, a = 1502.0(3), b = 1070.1(2), c = 1850.1(3) pm, $\beta = 90.75(1)^\circ$, $V = 2973 \cdot 10^6$ pm³, Raumgruppe $P2_1/c$ (Z = 4), $d_{ber.} = 1.15$ g/cm³. – Datensammlung: Die Zellkonstanten wurden durch Verfeinerung von je 25 Reflexen mit hohen Beugungswinkeln aus verschiedenen Bereichen des reziproken Raums bestimmt. Messung der Reflex-Intensität im Bereich 3° ≤ 2Θ ≤ 48° erfolgte auf einem Enraf-Nonius-CAD4-Diffraktometer bei Raumtemperatur mit Mo-K_α-Strahlung (λ = 71.069 pm, Graphit-Monochromator) nach der ω/ Θ-Scan-Methode. Nach Lorentz-, Polarisation- und einer empirischen Absorptions-Korrektur (μ = 3.2 cm⁻¹, min. Transmission 84.7%) wurden 4925 unabhängige Strukturfaktoren erhalten. – Lösung der Struktur: SHELXS (direkte Methoden). Die Lagen der

 Tab.
 1. Atomkoordinaten von 3c. Die mit * gekennzeichneten Atome wurden isotrop verfeinert

			_	
ACOM	X	У	Z	B(equ.)
Ті	0.2689(1)	0.1770(2)	0.1418(1)	5.92(5)
01	0.2120(4)	0.0455(6)	0.0812(3)	5.6(2)
02	0.1598(4)	0.1679(6)	0.2082(3)	5.7(2)
03	0.1800(4)	0.2967(5)	0.0862(3)	6.6(2)
04	0.2981(4)	0.3299(6)	0.2012(3)	6.3(2)
05	0.3257(4)	0.0679(6)	0.1979(3)	7.2(2)
06	0.3525(4)	0.2144(6)	0.0767(3)	7.5(2)
C1	0.1678(6)	0.0537(8)	0.0216(5)	4.8(3)
C2	0.1329(5)	0.2358(8)	0.2577(4)	4.5(2)
C3	0.1373(6)	0.276(1)	0.0253(5)	6.8(3)
C4	0.2556(6)	0.3828(8)	0.2529(5)	6.0(3)
C5	0.3725(7)	-0.022(1)	0.2403(6)	9.8(4)
C6	0.4148(8)	0.260(1)	0.0258(6)	13.1(4)
C7	0.1797(6)	0.3418(9)	0.2849(5)	5.7(3)
C8	0.1295(6)	0.1610(9)	-0.0093(5)	5.7(3)
C11	0.1542(5) 0.2217(6)	-0.0659(8)	-0.0209(4)	4.5(2)*
C12	0.2217(0) 0.2141(7)	-0.1554(9)	-0.0099(5)	0.1(3)*
C14	0.2141(7) 0.1/22(7)	-0.200(1)	-0.0510(0)	9.5(3)*
C15	0.1422(7) 0.0754(7)	-0.203(1) 0.106(1)	-0.0970(6)	0.2(3)*
C16	0.0734(7)	-0.190(1)	-0.1074(6) -0.0672(5)	6 7 (2) +
C21	0.0488(5)	0.2051(8)	0.2027(5)	5 7 (2) *
C22	-0.0084(6)	0.2979(9)	0.3186(5)	5.2(2)*
C23	-0.0904(6)	0.265(1)	0.3457(5)	7 1 (3)*
C24	-0.1150(6)	0.144(1)	0.3506(6)	7.9(3)*
C25	-0.0585(7)	0.050(1)	0.3268(6)	7.6(3)*
C26	0.0230(6)	0.0798(9)	0.2972(5)	5.5(2) *
C31	0.0946(7)	0.391(1)	-0.0046(6)	8.5(3)
C41	0.3054(7)	0.497(1)	0.2829(6)	9.1(4)
C51b	0.310(2)	0.013(3)	0.321(2)	6.4(8)*
C51a	0.322(2)	-0.073(3)	0.300(2)	6.4(8)*
C51c	0.286(3)	-0.117(4)	0.267(2)	13(1)*
C52b	0.469(2)	-0.024(3)	0.248(2)	8(1)*
C52a	0.386(2)	-0.135(3)	0.184(2)	8(1)*
C52C	0.439(2)	-0.093(3)	0.188(2)	9(1)*
C53D	0.339(2)	-0.146(4)	0.235(2)	12(1)*
C53a	0.456(2)	0.069(3)	0.2/0(1)	5.6(7)*
C53C	0.417(3)	0.052(4)	0.294(2)	13(1)*
C61a	0.379(2) 0.369(2)	0.109(3)	-0.045(1)	4.4(6)*
C61b	0.300(2) 0.502(3)	0.419(3) 0.264(4)	0.031(2)	0.5(8)*
C62a	0.502(3)	0.204(4)	0.022(2)	13(1)* 6 5/0\+
C62b	0.435(2)	0.2(2(3))		11(1)*
C62c	0.378(2)	0.389(3)	-0.006(2)	9(1)*
C63b	0.438(3)	0.385(4)	0.046(2)	13(1)*
C63a	0.510(2)	0.181(4)	0.054(2)	10(1)*
C63c	0.396(2)	0.239(3)	-0.050(2)	7.7(9)*

Wasserstoff-Atome wurden nach idealer Geometrie berechnet und nicht verfeinert. Mit Ausnahme der Phenyl-Kohlenstoffatome und der Methyl-Kohlenstoffatome der Butylgruppen wurden alle übrigen Atome mit anisotropen Temperaturparametern nach der Methode der kleinsten Quadrate mit der vollständigen Matrix verfeinert (Enraf-Nonius SDP). Die *tert*-Butylgruppen sind fehlgeordnet; für jedes Kohlenstoffatom der Methylgruppen wurden drei alternative Lagen (in Tab. 1 als a, b und c gekennzeichnet) mit dem Gewicht 0.33 verfeinert. R = 0.096, $R_w = 0.073$ für 1823 Reflexe mit $F_o \ge 2.06 \sigma(F_o)$; w = 1. In Tab. 1 sind die Atomkoordinaten der Nicht-Wasserstoffatome wiedergegeben^[13].

Di-tert-butoxybis[(tricarbonylchrombenzoyl)acetonato]-titan (2c): Eine Lösung von 0.25 g (0.48 mmol) 3c und 0.21 g (1 mmol) Cr(CO)₆ in 20 ml Bu₂O/THF (10:1) wird 16 h unter Rückfluß erhitzt. Die Lösungsmittel und nicht umgesetztes Cr(CO)₆ werden danach i. Vak. entfernt. Man erhält 2c als schwach grünes Pulver, das auch nach Umkristallisation aus Toluol/Petrolether (1:10) noch durch unumgesetztes 3c und tBuO-ärmere Produkte verunreinigt ist. – IR (Nujol): v(CO) = 1970 (vs), 1895 (vs) cm⁻¹. – ¹H-NMR (C₆D₆): δ = 7.7, 7.5, 7.3 (m, 2H, C₆H₅), 6.2 (s, 2H, CH), 5.6 [br, 8H, C₆H₅Cr(CO)₃], 2.0 [br, 6H, C(O)Me], 1.3 (br, 15H, OCMe₃).

Bis(benzoylacetonato)di-tert-butoxyzirkonium (3d): Eine Lösung von 0.39 g (1.0 mmol) Zr(OtBu)₄ und 0.16 g (1.0 mmol) Benzoylaceton in 10 ml Toluol wird 2 h bei 40 °C gerührt. Danach wird die Lösung auf die Hälfte eingeengt, und es werden 5 ml Petrolether zugefügt. Beim Abkühlen auf -30 °C fällt 3d als farbloses Pulver aus, das abfiltriert und im Hochvak. getrocknet wird. Ausb. 0.21 g (75% bzgl. bzac – H), Schmp. 107 °C. – IR (Nujol): v(C=O) 1585 (s), 1555 (vs), v(C=C) 1515 (vs) cm⁻¹. – ¹H-NMR (CDCl₃): δ = 7.45 (m, 10H, C₆H₅), 6.29, 6.27 (s, 2H, CH), 2.19, 2.13 [s, 6H, C(O)Me], 1.29, 1.24 (s, 18H, OCMe₃). – ¹³C-NMR (CDCl₃): δ = 192.8, 191.6 (CO), 181.9, 181.1 (C'O), 137.9, 131.5, 128.1, 127.7 (C₆H₅), 99.3, 98.9 (CH), 75.6 (OCMe₃), 32.3, 31.2 (OCMe₃), 27.7 [C(O)Me].

> $C_{28}H_{36}O_6Zr_2$ (559.8) Ber. C 60.08 H 6.48 Gef. C 59.63 H 6.36

CAS-Registry-Nummern

1a: 138541-63-6 / 1b: 138541-58-9 / 2a: 138541-57-8 / 2b: 138541-60-3 / 2c: 138541-61-4 / 3b: 138541-59-0 / 3c: 138661-28-6 / 3d: 138541-62-5 / Cr(CO)₆: 13007-92-6

- ^{*} Herrn Professor Wolfgang Beck zum 60. Geburtstag gewidmet.
 ^[1] 7. Mitteilung: B. Breitscheidel, J. Zieder, U. Schubert, Chem. Mater. 1991, 3, 559-566
- Mater. 1991, 3, 559-566.
 R. C. Mehrotra, R. C. Bohra, Metal Carboxylates, Academic Press, London, 1983; R. C. Mehrotra, R. C. Bohra, D. P. Gaur, Metal β-Diketonates and Allied Derivatives, Academic Press, London, 1978.
- ¹³ C. Sanchez, J. Livage, M. Henry, F. Babonneau, J. Non-Cryst. Solids 1988, 100, 65-76; C. Sanchez, J. Livage, New J. Chem. 1990, 14, 513-521; C. Sanchez, F. Babonneau, S. Doeuff, A. Leaustic in Ultrastructure Processing of Advanced Ceramics (Hrsg.; J. D. Mackenzie, D. R. Ulrich), J. Wiley & Sons, Inc., New York, 1988, S. 77-87; J. Livage, Mat. Res. Soc. Symp. Proc. 1986, 73, 717-724.
- ^[4] R. K. Mehrotra, R. C. Mehrotra, Can. J. Chem. 1961, 39, 795-798.
- ^[5] A. Yamamoto, S. Kambara, J. Am. Chem. Soc. 1957, 79, 4344-4348.
- ^[6] U. B. Saxena, A. K. Rai, V. K. Mathur, R. C. Mehrotra, J. Chem. Soc. A **1970**, 904-907.
- ^[7] J. H. Wengrovius, M. F. Garbauskas, E. A. Williams, R. C. Going, P. E. Donahne, J. F. Smith, *J. Am. Chem. Soc.* **1988**, *108*, 982-989.
- ^[8] N. Serpone, R. C. Fay, Inorg. Chem. 1967, 6, 1835-1843.
- ¹⁹ R. C. Fay, A. F. Lindmark, J. Am. Chem. Soc. 1983, 105, 2118-2127.
- D. C. Bradley, C. E. Holloway, J. Chem. Soc. A 1969, 282-285;
 J. F. Harrod, K. Taylor, J. Chem. Soc., Chem. Commun. 1971, 696-697.
- ^[11] U. Schubert, E. Arpac, W. Glaubitt, A. Helmerich, C. Chau-Mu, *Chem. Mater.*, im Druck.
- [12] D. Wright, D. A. Williams, Acta Cryst., Sect. B, 1968, 24, 1107-1114.
- ^[13] Weitere Einzelheiten zu den Kristallstrukturbestimmungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, DW-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55823, der Autorennamen und des Zeitschriftenzitats angefordert werden.

[388/91]